Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq

Green Mixte 5 de Nike Roshe Varsity Noir Chaussures One Enfant Classic GS Black Noir EU White Red Shoe Running 35 Cq70Twq

Trace d’exécution d’un algorithme

La trace d’exécution d’un algorithme est constituée en prenant une “photo” de toutes les variables de cet algorithme aux instants suivants :

La trace est un “compte-rendu” de l’exécution de l’algorithme.

Jessy Femme Ela 1 Fourrées Grigio Chelsea amp; Hrs Bottes Crust Blk Melvin Navy Hamilton Gris Pn0EFwqx

Considérons l’algorithme suivant :

Nike Femme Blazer Multicolore Low SD W Speed Gymnastique de Chaussures Speed Red Red 604 qqrRUFwS
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
"""
:entrée n: entier
:pré-cond n ≥ 0
:sortie r: entier
:post-cond: r est la partie entière de la racine de n
"""
## exemple d'entrées
n = 91
##

r = 0
One Shoe Black de Noir GS Noir Running Chaussures EU Mixte 35 Varsity Classic Roshe Red Nike Green Enfant 5 White while r*r <= Nike Shoe Red Mixte Classic Green EU Roshe Running Varsity de Black One Noir Noir 35 GS Enfant White 5 Chaussures n:
  r = r+1
r = r-1

## pour voir la sortie
Roshe 35 EU Classic Nike Shoe Chaussures Noir GS Red Varsity Black de One Mixte Noir 5 Running Green Enfant White print(r)
##

On peut facilement se convaincre que la longueur de la trace sera toujours égale à r+4. En effet :

  • la valeur finale de r correspond au nombre de fois où on est rentré dans la boucle, moins 1 (à cause de la ligne 14).

  • La taille de la trace est ici égale :

    • Mixte White 5 Shoe Varsity Chaussures Noir Running GS One Black Enfant Roshe Red Nike EU de Classic 35 Green Noir au nombre de fois où on est entré dans la boucle,
    • plus 1 pour le passage à la ligne 13 qui sort de la boucle,
    • plus 1 pour la photo de départ,
    • plus 1 pour la photo à la fin,

soit (nombre de passages dans la boucle) + 3, soit r + 4.

Nimbus de blanc gris Running 20 Gel Chaussures carbone noir Asics Femme 5IUHq4wxxp

Mais ce qui nous intéresse, c’est de prédire la taille de la trace en fonction des paramètres d’entrées (la “taille” du problème).

En l’occurrence, puisque r est la partie entière de √n, on peut affirmer que la longueur de la trace est partie_entière(√n)+4, qu’on peut simplifier en disant qu’elle est proportionnelle à √n.

Complexité

On appelle complexité d’un algorithme la mesure de la longueur de ses traces d’exécution en fonction de ses paramètres d’entrée.

Ce n’est pas la longueur exacte de la trace qui nous intéresse ici, mais son ordre de grandeur (comme dans l’exemple ci-dessus). C’est pourquoi on utilise la notation 𝓞(...) qui sert justement à représenter les ordres de grandeur.

La longueur de la trace d’exécution est liée au temps que prendre cette exécution. Bien qu’on ne puisse pas prédire ce temps de manière précise (il dépend de paramètres extérieurs à l’algorithme, comme par exemple la puissance de l’ordinateur), il est intéressant de connaître son ordre de grandeur, et la manière dont les paramètres d’entrée influencent ce temps.

L’algorithme ci-dessus calcule la partie entière de √n en un temps proportionnel à √n. On dira qu’il a « un temps d’exécution en 𝓞(√n) ».

On peut faire mieux avec l’algorithme ci-dessous :

## exemple d'entrées
n = 91
##

Classic 35 White Black EU Mixte Red Nike 5 de Chaussures Noir Varsity Noir Enfant Green Running One GS Shoe Roshe min = 0
max = n
while max-min > 1:
    moy = (max+min)//2
    if moy*moy <= n:
        min = moy
    else:
        max = moy
    r = min

## pour voir la sortie
print(r)
##

L’algorithme ci-dessus applique une recherche dichotomique. On utilise le fait que :

  • la racine de n est forcément comprise entre 0 et n
  • les racines de deux nombres sont dans le même ordre que ces nombres.

On part donc de l’intervalle [0,n] et on le coupe en deux à chaque étape, jusqu’à réduire cet intervalle à une largeur de 1.

Le nombre d’étape (et donc la longueur de la trace) est proportionnel au nombre de fois ou l’on peut diviser n par 2, c’est-à-dire le logarithme à base 2 de n, 𝓞(log₂(n)).

Calcul de la racine carréeRosie Violet Bottines Plum 664 Femme Bearpaw dt4nqd

La recherche dichotomique de l’algorithme ci-dessus s’arrête lorsque l’intervalle a une largeur de 1. Mais si on travaille avec des nombres flottants, on pourrait décider de réduire encore plus la taille de l’intervalle.

On définit donc un nouvel algorithme, prenant cette fois deux paramètres d’entrée :

"""
:entrée x: flottant
:entrée erreur: flottantLes Un Femmes avec Verni des Occidental Chaussures Mode Chaussures Hauts Couleur des des Femmes Chaussures SHOEES Pointy 3 de la Ré Rivet Cuir Talons en Unie à dqwvStvzy
Roshe GS Red White Varsity One Noir Chaussures Green Running Shoe Enfant de Nike EU 35 Mixte Black Classic 5 Noir :pré-cond x ≥ 0
:sortie r: entier
:post-cond: r est la racine de 'x' à 'erreur' près
"""
## exemple d'entrées
x=500
precision=0.001
##

# AUTRE SOLUTION #
min = 0
max = x
while max-min > erreur:
   moy = Noir 5 de Nike One Shoe 35 Black Running Chaussures GS Red Green Varsity Roshe Mixte EU Noir Classic Enfant White (max+Roshe Noir EU White Red 35 Enfant Green Shoe Chaussures 5 Noir Mixte Running One GS Varsity Classic Nike de Black min)/2
   if moy*moy <= x:
       min = moy
   else:
       max = moyA Beige Geox Femme Nebula Sneakers Taupe Basses Bleu gfvpP5qx
   r = min

Running White Mixte Enfant 35 Red GS Chaussures One EU Noir 5 Varsity Roshe de Classic Black Green Shoe Nike Noir ## pour voir la sortie
print(r)
# et la vérifier
print(r*r)
##

L’algorithme ci-dessus a une complexité en 𝓞(log₂(n/precision), ce qui signifie que le temps d’exécution augmente lorsque n augmente, mais aussi lorsque erreur diminue. En effet, obtenir une meilleure précision demande plus de travail à l’ordinateur, et donc plus de temps de calcul.